

Figure P3.23

P3.24. In Fig P3 24, $v = 10 \sin \omega t V$ and $V_B = 6 V$. Under what circumstances will current *i* flow? Sketch v and i as functions of time on the same axes.

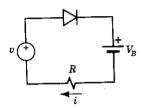


Figure P3 24

P3-25. Explaining your reasoning and stating any simplifying assumptions, predict current I in Fig. P3.25.

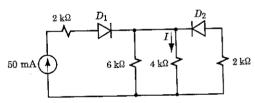


Figure P3 25

- **P3-26.** Four ideal diodes are connected in the fullwave rectifier of Fig. 3.27 where $R_L = 1000 \,\Omega$. Specify the amplitude of v so that the average current through R_L is 20 mA.
- **P3-27.** An ideal diode is used in a half-wave rectifier with power supplied at 120 V (1ms) and 60 Hz For a load $R_I = 2000 \Omega$, predict I_{dc} , V_{dc} , and the power delivered to the load.
- P3-28. Repeat Problem 3-27 assuming a full-wave bridge rectifier circuit.
- P3-29. A diode is connected in series with a 30-V rms source to charge a 12-V battery with an internal resistance of 0 1 Ω . Specify the series resistance necessary to limit the peak current to 2 A. Estimate the time required to recharge a 10-A hr battery.

Answer: $R = 14.66 \Omega$, time = 19.2 h

- **P3-30.** In Fig. 3.30, $C = 100 \mu \text{F}$ and $R_I = 10 \text{ k}\Omega$. For $V_m = 20 \text{ V}$ at 60 Hz, predict:
 - (a) The dc load current through R_I
 - (b) The percent ripple in v_L
 - (c) The reading of a dc ammeter in series with R_L if C is disconnected
- P3-31. A "load" requires 10 mA at 30 V dc with no more than 0.5 V ripple.
 - (a) Draw the circuit of a power supply consisting of a transformer with 120-V 60-Hz input, half-wave rectifier, capacitor filter, and effective R_I ; specify C and the turn ratio of the transformer.
 - (b) Repeat for a full-wave bridge rectifier circuit. Draw a conclusion.
- P3-32. In Fig. 3.32b, R=1 k Ω , $V_A=2$ V, and $V_B=5$ V Sketch v_2 for $v_1=6$ sin ωt V.
- **P3-33**. In Fig P3.33, $v_1 = 10 \sin \omega t \text{ V}$
 - (a) Sketch $v_1(t)$ and $v_2(t)$ on the same graph
 - (b) Draw the transfer characteristic v_2 versus v_1 .
 - (c) What function is performed by this circuit?

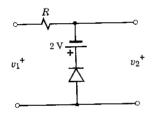


Figure P3 33

P3-34. For $v_1 = 10 \sin \omega t \, V$, $R = 1 \, k\Omega$, and $V = 4 \, V$ in Fig. P3.34, sketch $v_2(t)$.

Figure P3.34 o

P3-35. For $v_1 = 10 \sin \omega t \, V$, $R = 1 \, \text{k}\Omega$, and $V = 4 \, \text{V}$ in Fig. P3.35, sketch $v_2(t)$.

Figure P3.35 o

P3-36. The periodic voltage v_1 of Fig. P3.36 is applied to the input of Fig. P3.33. Show the input signal v_i and the output signal v_o on the same graph.

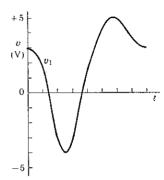


Figure P3 36

P3-37. Repeat Problem P3 36 for the circuit of Fig. P3.37.

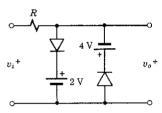


Figure P3.37

P3-38. The periodic voltage v_1 of Fig. P3 36 is applied to the input of Fig. P3 38. Show the input signal v_i and the output signal v_o on the same graph.

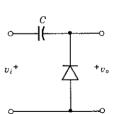


Figure P3 38

P3-39. Repeat Problem 3.38 for the circuit of Fig P3.39 where $V_B = 2 \text{ V}$.

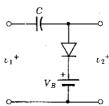


Figure P3 39

- **P3-40.** In Fig. P3 39, $v_1 = 10 \sin \omega t$ V and $V_B = 4$ V Assuming v_1 has been applied a "long" time, plot v_1 , v_C , and v_2 on the same time axis.
- **P3-41.** In Fig. P3.41, when voltage $v_1 = V_m(0.5 + \sin \omega t)$ V, the high-resistance dc voltmeter VM reads 70 V.
 - (a) What functions are performed by each section of the circuits?
 - (b) How is v_2 related to v_1 ? Show v_1 , v_2 , and v_3 on the same graph.
 - (c) Determine V_m and define the function of this instrument

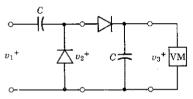


Figure P3.41

- **P3-42.** Devise a circuit using ideal amplifiers to provide an output $v_o = 10 \int v_1 dt 5v_2$
- **P3-43.** Devise a sweep circuit using an op amp to provide an output voltage proportional to time. Show a reset switch to ensure that $v_o = 0$ at t = 0.
- P3-44. Find the effective and average values of the waveforms of Figs P3.44a and b.

Answer: (a) effective value = 1.15 V; (b) effective value = 4.24 A.

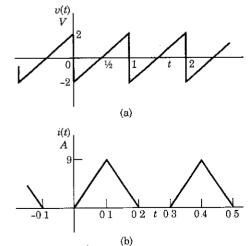


Figure P3 44

P3-45. A regular periodic sinusoidal voltage is given by $v = A \cos \omega t$. Find the effective value and average value for (a) the sinusoid, (b)

the half-wave rectified sinusoid, and (c) the full-wave rectified sinusoid

P3-46. Consider a periodic triangular wave as shown in Fig. P3.46 Find the effective value of (a) the triangular wave, (b) the half-wave rectified triangular wave, and (c) the full-wave rectified triangular wave

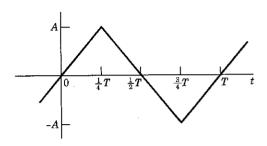


Figure P3 46

P3-47. If V = 20 volts and $R_L = 100 \text{ k}\Omega$, what is the instantaneous voltage drop across the diode and what is the instantaneous current in R_L ? Assume ideal conditions and sketch v_p of the diode and i of the resistor current

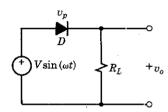


Figure P3 47

P3-48. Given a half-wave rectifier connected to a generator with 100 ohms internal resistance, find the instantaneous output voltage v_o . The forward diode resistance is 200 ohms, and the reverse resistance is 200 kilohms.

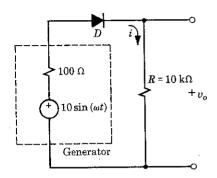


Figure P3.48

P3-49. Assume that the diode in the circuit of Fig. P3 49 is ideal. When the switch is closed at t = 0, the capacitor has no initial charge. Sketch at least one cycle of the output voltage v_o beginning at t = 0.

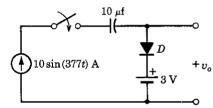


Figure P3 49

ADVANCED PROBLEMS

- **AP3-1.** Demonstrate analytically that the tangent to any exponential function at time t intersects the time axis at $t + \tau$ where τ is the time constant.
- AP3-2. The voltage across a 10-µF capacitor is observed on an oscilloscope. In 0.5 s after a 10-V source is removed, the voltage has decayed to 1.35 V. Derive and label a circuit model for this capacitor
- **AP3-3.** A current $i = 2 \cos 2000t$ A flows through a series combination of L = 30 mH and C = 5 μ F. (C is initially uncharged.)

- (a) Determine the total voltage across the combination as f(t)
- (b) Repeat part (a) for *L* increased to 50 mH and interpret this result physically
- **AP3-4.** A voltage consists of a dc component of magnitude V_0 and a sinusoidal component of effective value V_1 ; show that the effective value of the combination is $(V_0^2 + V_1^2)^{1/2}$.
- **AP3-5.** The circuit of Fig. AP3.5 is a practical means for obtaining a high dc voltage without using a transformer. Stating any simplifying assumptions, predict voltages V_1 and V_L

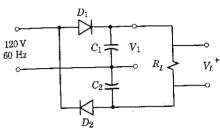


Figure AP3.5

AP3-6. A diode and battery are used in the "voltage regulator" circuit of Fig. AP3 6, where $R_5 = 1000 \Omega$ and $R_L = 2000 \Omega$. If V_1 increases from 16 to 24 V (a 50% increase), calculate the corresponding variation in load voltage V_L . Is the "regulator" doing its job?

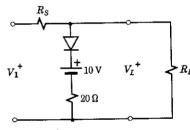


Figure AP3.6

I

al 1t **AP3-7.** A voltage v_1 varies from -3 to +6 V For a certain purpose, this voltage must be limited to

a maximum value of +40 V A diode, a 6-V battery, and assorted resistances are available. Design a suitable circuit

AP3-8. The output of a flowmeter is v = Kq, where q is in cm³/s and K = 20 mV s/cm³. The effective output resistance of the flowmeter is 2000 Ω . Design a circuit that will develop an output voltage $V_o = 10$ V (to trip a relay) after 200 cm^3 have passed the metering point.

AP3-9. In Fig. AP3.9, input voltages A and B are restricted to either 0 or +5 V. Tabulate the four possible combinations of A and B and the corresponding values of output voltage V_o . Define in words the output in terms of the inputs. Why is this called an **OR** circuit? Where is it useful?

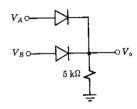


Figure AP3 9

AP3-10. Calculate the exact gain of the circuit of Fig. 3.18